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Long-Term Trends in Significant 
Wave Heights in The Mediterranean 
as an Indicator of Climate Change 
Ahmed S.A. Ibrahim1, Anas M. El-Molla1,2, Hany G.I. Ahmed1 

The Mediterranean coastal zones, particularly along the Nile Delta, are increasingly vulnerable to the 
impacts of climate change. This study examines the historical changes in the significant wave height along the 
Nile Delta coast over the past 84 years (1940-2023) at a depth of 20 meters. By synthesizing a comprehensive 
long-term wave data series using ERA5 reanalysis data and the MIKE21-SW model, the study establishes a 
robust foundation for analysis. To ensure accuracy, the observed wind data were contrasted against ERA5 data, 
and they were found to be similar to a great extent. Furthermore, the model's accuracy was rigorously validated 
against the observational data, ensuring the reliability of the results. Three methods were used to obtain the 
trends for the maximum wave height to ensure robust and reliable trend assessments (i.e., linear regression, 
Theil-Sen, and ElasticNet). The results were obtained and analyzed, revealing a statistically significant increase 
in the maximum wave heights during the study period. Particularly, seasonal analysis revealed a positive trend 
in maximum wave heights during winter and spring (0.15 to 0.67 cm/year respectively). Furthermore, the 
monthly analysis showed a positive trend in the wave heights for all months except July, August, and September. 
Specifically, there were notable increases from September to December, ranging from 0.24 to 0.92 cm/year. 
These findings are consistent with the global trends of increasing wave heights due to climate change. It is 
essential for developing adaptive coastal management strategies and designing resilient structures. 
Consequently, the results will assist coastal authorities in mitigating the impacts of climate change on coastal 
zones. 
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1. INTRODUCTION 

Coastal zones, often attracting significant public interest due to their development and urbanization 
potential, typically result in high population densities (Kovačić and Favro, 2024; Satterthwaite, 2007). However, 
these areas are particularly vulnerable by the adverse effects of climate change (Albanai, 2020). For instance, 
Aucan (2018) emphasizes the necessity of regional research to understand how local changes impact 
hydrodynamics. In this context, understanding wave climate is crucial for assessing the implications of climate 
change on coastal ecosystems, communities, and infrastructure. Waves play a pivotal role in shaping coastal 
morphology and influencing near-shore processes, as highlighted by the IPCC (2013). Significant wave height 
“Hs” is especially important for coastal engineering projects, offshore structures, and various maritime activities 
(Aydoğan and Ayat, 2018). 

Numerous studies have analyzed Hs trends using ERA5 reanalysis data, including the work by Caloiero, 
Aristodemo, and Ferraro (2022). Additionally, researchers such as Hemer et al. (2013), Mentaschi et al. (2017), 
and Soukissian et al. (2018) have investigated global changes in wave energy and height. In the Mediterranean 
region, studies by Lionello et al. (2006) and Cannaby and Hüsrevolu (2009), among others, have explored the 
impact of cyclones and the long-term variability of waves. Recent research has also employed numerical models 
to predict extreme wave occurrences and assess coastal hazards (Ibrahim et al., 2024; Pang et al., 2023; 
Saraçoğlu et al., 2016). 

Despite these advances, there is a notable lack of data on wave climate along Egypt's coast. Amarouche 
et al. (2019) highlighted the limited and often inaccurate data available for the Egyptian coastline. Similarly, Elkut 
et al. (2021) emphasized the urgent need for developing wave forecasting models to mitigate potential hazards. 
Understanding long-term changes in ocean waves is essential for analyzing climate dynamics and their societal 
and economic impacts. Researchers have focused on historical data analysis and future scenario projections 
using climate models (Chowdhury et al., 2019; Grabemann and Weisse, 2008; Wang and Swail, 2002). For 
example, Ian R. Young and Ribal (2019) identified a global increase in mean Hs from 1985 to 2018, noting an 
annual rise in mean Hs by 0.3-1 cm/year. Similarly, Shi et al. (2024) observed a global increase in Hs associated 
with the tropical cyclones by approximately 3% per decade. Specifically, in the Mediterranean Sea, studies have 
reported an overall increase in mean wave energy over the past 40 years, with distinct trends in certain areas 
(Caloiero et al., 2022). 

Recent research has further highlighted seasonal and spatial variations in the wave trends across the 
Mediterranean Sea. For example, Elshinnawy and Antolínez (2023) conducted an analysis covering 58 years 
from 1961 to 2018, examining both mean and extreme waves in the region. They observed relatively mild long-
term trends in Hs, with increases of up to 6 cm per decade. Similarly, Aristodemo et al. (2024) reported 
increasing trends in both the mean and maximum Hs, as well as in Peak Wave Period “Tp”. Although there is 
some debate regarding the trends in the mean Hs, as noted by Amarouche et al. (2022), other studies, such as 
De Leo et al. (2024), have identified significant trends in the extreme wave values in specific regions. This body 
of work underscores the critical importance of understanding wave behavior and trends, particularly in the 
context of a changing climate. 

Based on this framework, the current study investigates the impact of climate change on Hs in the 
Mediterranean, focusing specifically on the Nile Delta region. By leveraging high-resolution ERA5 reanalysis 
data and employing the MIKE 21-SW model, the study constructs an extensive 84-year dataset, providing a 
robust foundation for analyzing long-term wave height trends. Understanding these variations is crucial for 
developing adaptive coastal management strategies and designing structures that can withstand evolving wave 
conditions. Furthermore, to ensure a thorough and unbiased trend analysis, three trend estimation methods are 
used (i.e., linear regression, Theil-Sen, and ElasticNet). This multi-method approach enhances the robustness 
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of trend detection by addressing the limitations inherent in each technique and ensuring a comprehensive 
assessment of the wave height trends. 

2. MATERIAL AND METHODS 

2.1. Study Area 

Among the notable works on the Mediterranean, Amarouche et al. (2019) documented that it is a semi-
enclosed basin connected to the Atlantic via the Strait of Gibraltar. This geographic feature, combined with 
human activities and the impacts of climate change, has heightened the susceptibility of the Mediterranean 
coastal regions to various hazards, as noted by Simav et al. (2013). Furthermore, Knobler et al. (2022) 
highlighted that the Eastern Mediterranean, including the Nile Delta region, is a significant climate hotspot 
necessitating focused investigation. 

The study area, specifically the Nile Delta, spans a coastal length of 370 km and is situated in the 
southeastern part of the Mediterranean (Figure 1). It lies geographically between the longitudes 29.2° and 32.6° 
E and latitudes 30.85° and 31.0° N. Nafaa et al. (1991) have characterized this region as a critical zone along the 
Northern coast, extending from Abu-Quir to Port-Said. This area frequently experiences severe winter storms, 
which substantially contribute to its annual sediment budget. Notably, in winter, the maximum recorded Hs 
reaches 4.0 m, predominantly from the WNW-NW direction, with fewer waves originating from the NNE-NE 
sector. 

Moreover, El-Nahry and Doluschitz (2010), and Iskander (2013) reported that the wave climate in the 
Delta is influenced by several factors, including wind patterns, seasonal variations, and topography. Naffaa 
(1995) further emphasized the seasonality of wave conditions in the Delta. Specifically, from March to August, 
the region experiences relatively calm seas, whereas from September to February, the wave conditions become 
notably more intense. 

 

Figure 1. Study area, bathymetry map, model boundaries, buoy locations in the Nile Delta, and the selected 

locations 
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2.2. Data Assembly 

During the data assembly phase, various datasets were gathered for the study area, including 
bathymetric maps, wind data, and wave data. Bathymetric maps were obtained from Admiralty charts, and 
contour lines in front of the Delta were extracted to represent the bathymetry of the study area. 

Wind datasets were sourced from ERA5 for Rosetta and Damietta for the year 2017. Additionally, wind 
observations were obtained from Rosetta and Damietta for the same period. The observed wave data were 
extracted from the Idku Buoy for the period 2004-2005 and the Damietta Buoy for 2003-2004, as detailed in 
Table 1. 

It is important to note that the ECMWF Reanalysis Project, conducted by the European Centre for 
Medium-Range Weather Forecasts “ECMWF”, has produced several reanalysis datasets. ERA-15, the first 
analysis product, covered the period from 1978 to 1994. This was followed by ERA-40, which provided data 
from 1957 to 2002. Subsequently, ERA-Interim was released with data spanning 1979 to 2019. The most recent 
release, ERA5, offers high spatial resolution and covers the period from 1940 to 2023. 

ERA5 benefits from reanalyzing historical data using a consistent system that incorporates archived data 
not available in earlier analyses. This advancement allows for the revision of historical maps, particularly in areas 
with sparse or uneven data coverage, and facilitates the creation of new maps incorporating atmospheric levels 
that were not previously considered.  

 

Buoy Instrument 
Depth 

(m) 
Period 

Temporal 
resolutions 

Number of 
Observations 

Idku S4DW 14.1 
07.2004-12.2004 

4-hour 
1,110 

01.2005-11.2005 1,798 

Damietta S4DW 12 
07.2003-12.2003 

4-hour 
1,777 

01.2004-07.2004 736 

Table 1. Observed wave data from the Nile Delta 

2.3. Numerical Modeling  

The numerical modeling for this study was conducted using the MIKE 21-SW model. This section 
provides an overview of the historical and theoretical background of the MIKE 21-SW model, detailing its 
development and underlying principles. Additionally, the section outlines the calibration and validation 
processes employed to ensure the accuracy and reliability of the model. This involves a comprehensive 
explanation of the procedures used to adjust and test the model against the observed data. Furthermore, the 
section elaborates on the synthesis of the near-shore wave long-term data series. This synthesis integrates 
historical wave data to enhance the model's performance and provide a robust framework for analyzing wave 
conditions in the study area.  

 MIKE 21 Background 

MIKE 21, developed by DHI, is a third-generation model designed for simulating 2-D wave dynamics. It 
utilizes a mesh that implements the cell-centered finite-volume technique based on differential equations 
governing wave behavior. Among its various modules, the Spectral Waves module stands out as a third-
generation tool for spectral wind-wave simulations. This module is specifically designed to model the 

PFST-User
4-hour
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transformation of waves driven by wind forces. The MIKE 21-SW module is versatile, capable of representing 
waves in different types of areas, including complex coastal and near-shore environments. The governing 
equations used in MIKE 21-SW are formulated for both the Cartesian and Polar coordinate systems, as described 
by Komen et al. (1994) and I. R. Young (1999). These equations provide the foundation for accurately simulating 
wave transformations and interactions. The following sections detail the specific governing equations used in 
MIKE 21-SW: 

𝑆𝑆
𝜎𝜎

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇(�⃗�𝑣𝑁𝑁)    (1) 

Where 𝑁𝑁(𝜎𝜎, 𝜃𝜃, 𝑥𝑥, 𝑡𝑡) is action-density, t is time, x and y denote Cartesian-coordinates, 𝑣𝑣 = (𝑐𝑐𝜎𝜎 , 𝑐𝑐𝜃𝜃 , 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) 

denotes propagation-velocity in 4-D, and ∇ is 4-D spatial differential operator (i.e., v, σ, and θ). 

 Set-up of MIKE 21-SW 

To enhance the accuracy of the simulation, the region was discretized using a triangulated mesh that 
covers 48 km², with variable resolution tailored to both offshore and onshore conditions. This mesh consisting 
of 229,001 points and 454,965 triangles offers a highly detailed spatial representation essential for capturing the 
intricate coastal and bathymetric features. The use of variable resolution was crucial in balancing computational 
efficiency with the need for precision, ensuring that the complex dynamics of the region were accurately 
modeled. 

In configuring the MIKE 21-SW model, special attention was given to the accurate simulation of wave 
conditions. Following the insights of Akpinar and León (2016), and Amarouche et al. (2019), the model 
meticulously incorporated critical factors such as bathymetry, wind persistence, and fetch, which are essential 
for precise wave modeling. Bathymetric data, sourced from Admiralty charts, served as the foundation for 
simulating wave interactions within the study area, as shown in Figure 1, which illustrates the bathymetry used 
for wave climate simulations and highlights the region's boundaries. 

The model was driven by ERA5 reanalysis data, covering the period from 1940 to 2023, which provided 
realistic climate conditions updated every four hours. This comprehensive dataset included wind and wave 
parameters, ensuring a robust representation of historical climate variability. The JONSWAP formulation was 
employed to model the wave spectrum, essential for accurately capturing energy distribution in waves. The 
spectral formulation featured a directional frequency wave spectrum with 16 frequency bins, selected to 
encompass a wide range of wave directions and frequencies, ensuring a detailed representation of the wave 
climate. Model outputs included Hs and Tp at six specified locations. 

2.4. Model Calibration and Validation  

To evaluate the reliability of the ERA5 wind data from Rosetta and Damietta for the year 2017, a direct 
comparison was performed with the observed wind measurements from the same locations and periods. This 
comparison aimed to establish confidence in the ERA5 dataset. Subsequently, a comprehensive calibration and 
validation process was undertaken to ensure the accuracy of the MIKE 21-SW wave model results. Figure 2 
illustrates the calibration and validation procedures for the MIKE 21-SW model. These steps were crucial for 
fine-tuning the model’s parameters and ensuring its reliability for subsequent analysis. 

Specifically, the calibration phase utilized wave data from buoys in Edku for the year 2004. In contrast, 
the validation phase employed wave data from buoys in Edku (2005) and Damietta (2003-2004). The selection 
of these datasets was based on their availability and relevance to the study area, providing a solid foundation 
for model assessment. During both phases, particular attention was given to the key parameters such as Hs and 
Tp, with the simulated values computed at the point nearest to the buoy locations. A critical aspect of the 
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calibration process involved the precise selection of the friction coefficient, a parameter that significantly 
influences wave propagation. Additionally, incorporating wave-breaking factors (γ and α) was essential to 
accurately simulate realistic wave behavior as these factors govern energy dissipation due to breaking waves. 

To comprehensively assess the model's performance, two graphical tools were employed (i.e., Taylor 
diagrams and scatter plots). The Taylor diagrams provided a comparative overview by simultaneously displaying 
the normalized standard deviation and correlation coefficients between the simulated and observed data. This 
dual representation enabled a clear evaluation of the model's effectiveness in replicating real-world wave 
conditions. Additionally, scatter plots were used to illustrate the relationship between simulated and observed 
data points. The proximity of data clusters to the 45-degree line within these plots indicated the strength of the 
correlation, with a color scale further representing the density of these data points. These visual tools, when 
used in conjunction, provided a robust framework for evaluating the model's accuracy and consistency. 

 Moreover, the model's performance was quantitatively evaluated using several statistical metrics, 
including the correlation coefficient (CC), bias, Scatter Index (SI), Root-Mean-Square Error (RMSE), and Mean 
Absolute Error (MAE). The goal was to maximize the CC and minimize errors (RMSE, bias, and SI), thus offering 
comprehensive insights into the model's predictive accuracy. The equations used to compute these metrics are 
detailed in Equations 2 to 8. By meticulously calibrating and validating the MIKE 21-SW model, this study ensured 
that the simulated wave conditions closely matched the actual wave climate. This rigorous approach provides a 
reliable basis for further analysis and decision-making in coastal management. 

 

Figure 2. Flowchart for Calibration and Validation of MIKE21 SW Model 

�̅�𝑥 =  1
𝑛𝑛
∑ 𝑥𝑥𝑛𝑛
𝑖𝑖=1     (2) 

𝑦𝑦� =  1
𝑛𝑛
∑ 𝑦𝑦𝑛𝑛
𝑖𝑖=1      (3) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦 − 𝑥𝑥|𝑛𝑛
𝑖𝑖=1     (4) 
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𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑛𝑛
∑ (𝑦𝑦 − 𝑥𝑥)2𝑛𝑛
𝑖𝑖=1   (5) 

𝐵𝐵𝐵𝐵𝑀𝑀𝑅𝑅 = 1
𝑛𝑛
∑ (𝑦𝑦 − �̅�𝑥)𝑛𝑛
𝑖𝑖=1    (6) 

𝑅𝑅𝐵𝐵 =
�1𝑛𝑛� (𝑦𝑦−𝑥𝑥−𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆)2𝑛𝑛

𝑖𝑖=1
1
𝑛𝑛� |𝑥𝑥𝑖𝑖|

𝑛𝑛
𝑖𝑖=1

   (7) 

𝐶𝐶𝐶𝐶 =
� (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛

𝑖𝑖=1

�� (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1 � (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

  (8) 

Where n represents the number of data, x is the measured value, y is the simulated value, and �̅�𝑥 and 𝑦𝑦� 
represent the average values. 

 Evaluation of ERA5 Wind Data Accuracy 

The observed wind data were contrasted against ERA5 data, and the results are depicted in Figure 3. 
This scatter plot illustrates the comparison of ERA5 versus observed wind data for Rosetta and Damietta. It 
reveals a strong alignment with the 45° line, indicating a high degree of correspondence between the two 
datasets. 

To quantify this correspondence, several statistical metrics were employed. The analysis identified a 
slight bias of -0.38 m/s, indicating a minor underestimation in the ERA5 data. Additionally, the RMSE was 
calculated at 1.40 m/s, and the MAE was 1.09 m/s, both reflecting the average magnitude of discrepancies 
between observed and predicted values. Furthermore, the CC was found to be 0.90, demonstrating a strong 
positive correlation, while the SI was relatively low at 0.19%, highlighting the dataset's overall accuracy. 

When these results are compared to previous studies in the region, such as those by Abu Zed et al. 
(2022), they reported a CC of 0.90, a Bias of -0.31 m/s, an RMSE of 1.25 m/s, and an SI of 0.26%, the ERA5 
wind speed data used in this study show consistency. This alignment with earlier findings further validates the 
accuracy of the ERA5 data in capturing wind speeds for the area under investigation.  

 

Figure 3. ERA5 wind speed versus observed wind speed at Rosetta and Damietta during 2017 
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 Model Calibration 

The calibration process was undertaken to fine-tune the parameters of the MIKE 21-SWmodel, 
specifically the spectral wave module. For this process, deep-water wave data from ERA5 were utilized, and 
near-shore wave data at Edku for the year 2004 were obtained using MIKE 21-SW. The results of the calibration 
process are presented in Figures 4 and 5. Among the various model runs, the 8th run was found to outperform 
the others. This conclusion is supported by the Taylor diagram in Figure 4, where the grouping of model runs 
shows the eighth run closest to the observation point. This proximity indicates a better agreement between the 
modeled and measured values compared to the other runs. The 8th run demonstrated a robust CC for both Hs 
and Tp, with values of 0.96 and 0.79, respectively. These high CC values indicate a strong fit between the 
simulated and observed data. 

Moreover, the eighth run exhibited low RMSE values for Hs and Tp (0.15 m and 0.71 s, respectively), 
signifying minimal differences between predicted and actual values. The bias values for both parameters were 
close to zero (0.03 m for Hs and 0.01 s for Tp), indicating unbiased predictions. Additionally, the SI values showed 
negligible deviations from observed values (0.22% for Hs and 0.11% for Tp). Figure 5 presents scatter plots of 
observed and simulated Hs and Tp for the eighth run, showing a strong alignment along the 45-degree line for 
both parameters. This alignment further confirms the accuracy of the model in replicating the observed wave 
conditions. The 8th run's superior performance was achieved with the following calibration values: a friction 
coefficient of 0.001 m/s, α = 0.95, and γ = 0.8. 

 

Figure 4. Taylor diagrams for observed and simulated Hs with varying bottom friction 

  

Figure 5. Results of the 8th calibration run: (a) Hs (m), and (b) Tp (s) 
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 Model Validation 

The validation process is essential for ensuring the credibility of the MIKE 21-SW model's results. To 
validate the model, deep-water wave data from ERA5 were utilized for Edku (2005) and Damietta (2003 and 
2004). This step was crucial for instilling confidence in the model predictions. During this phase, the MIKE 21-
SW module was applied, and near-shore wave data were obtained for the specified periods and locations. 
Subsequently, the model's output was compared against the measured data from the same locations and 
timeframes. 

The validation results are summarized in Table 2, which lists the statistical parameters used to evaluate 
model accuracy. Additionally, Figure 6 illustrates the comparison between observed and simulated wave data 
for Hs and Tp. The close agreement between the observed and simulated data is evident from the high CC of 
0.890 for Hs and 0.775 for Tp. These values indicate a strong correlation between the model predictions and 
actual observations. 

Furthermore, the RMSE values were very low, at 0.055 for Hs and 0.168 for Tp, suggesting the minimal 
discrepancies between the model's outputs and the measured data. The SI values, 0.334 for Hs and 0.138 for 
Tp, also reflect the model's ability to accurately replicate the observed wave conditions. Collectively, these 
statistical measures indicate that the MIKE 21-SW model performed well during the validation process, 
accurately simulating the wave climate at the specified locations and time periods. 

The comparison of these validation results with those from previous studies conducted in the 
Mediterranean region reveals consistency. For instance, Amarouche et al. (2019) reported Bias, RMSE, and SI 
values for simulated Hs as 0.04m, 0.31m, and 0.3%, respectively. Similarly, Abu Zed et al. (2022) used the SWAN 
model and ERA5 data to calculate Bias, RMSE, and SI metrics for simulated Hs as 0.06m, 0.22m, and 0.33%, 
and for Tp as 0.43s, 1.34s, and 0.18% respectively. Furthermore, Elkut et al. (2021) reported Bias, RMSE, and 
SI values for simulated Hs of -0.28m, 0.29m, and 0.31% respectively. These comparisons underscore the 
robustness of the MIKE 21-SW model performance and confirm its reliability in simulating wave climate in the 
regions studied. 

 

Figure 6. Results of the validation process: (a) Hs (m), (b) Tp (s) 

Parameter Bias RMSE MAE SI (%) CC 

Hs (m) 0.055 0.219 0.162 0.334 0.890 

Tp (s) -0.168 0.923 0.644 0.138 0.775 

Table 2. Model results versus buoy observations 
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2.5. Long-Term Analysis of Maximum Wave Height  

Based on the MIKE 21-SW model's calibration and validation results, it was used to generate a long-
term series of near-shore wave data spanning from 1940 to 2023 (i.e., 84 years).  To conduct this analysis, six 
specific points were selected along the 20-meter depth contour line of the Nile Delta, where maximum wave 
limits were established at each location. This study utilizes three distinct time series analysis methods to identify 
long-term trends at the selected points along the Delta coast. These methods include linear regression, Theil-
Sen estimation, and ElasticNet modeling. Each of these techniques provides unique insights into the long-term 
maximum Hs trends, which will be described in detail below. 

 Linear Regression 

A linear regression was executed to the time series to obtain a seasonal trend and a monthly trend, 
where linear-regression equation, Equation (9), was utilized, in which ‘a and b’ were calculated using the least-
square method. 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑡𝑡      (9) 

where y is meteorological variable (i.e., Hs), t is time (year), a is regression coefficient (i.e., trend line 
intercept with y-axis), and b is slope coefficient. 

 Theil-Sen Estimation 

The Theil-Sen estimation is a method for calculating the linear slope of two variables. Theil-Sen operates 
by gathering every potential pair of data points and calculating the slope of the line that connects them. Then, it 
uses the median of these slopes to estimate the true slope. This approach makes it resistant to outliers because 
the extreme values have less influence on the final estimate compared to the linear regression, which considers 
all the data points equally (Abdalla, Bidlot, and Breivik, 2015; Sen, 1968; Yue, Pilon, and Cavadias, 2002). The 
slope estimate formula is as follows: 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = Median �
𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗
𝜕𝜕𝑖𝑖−𝜕𝜕𝑗𝑗

�    (10) 

Where y represents the Hs at the time tj and ti (tj>ti). 

 ElasticNet 

ElasticNet combines the two most popular regularized linear regression types (i.e., ridge L2 and lasso 
L1). It prevents the need to choose between these two models by incorporating both the L2 and L1 approaches. 
ElasticNet is especially useful when working with multicollinear datasets, as it manages such scenarios by 
identifying a subset of relevant features while minimizing overfitting. The objective function is as follows: 

𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑐𝑐𝑡𝑡𝑂𝑂𝑣𝑣𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑡𝑡𝑂𝑂𝑆𝑆𝑓𝑓 = 1
2𝜕𝜕
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2+∝ (λ1‖𝛽𝛽‖1 + λ2‖𝛽𝛽‖22)𝜕𝜕
𝑖𝑖=1  (11) 

Where N is the number of observations, yi is the actual response for observation, and 𝑦𝑦�𝑖𝑖  is the predicted 
response for observation. β is the vector of coefficients, and ‖𝛽𝛽‖1is its L1 norm (sum of absolute values). ‖𝛽𝛽‖22 
represents the coefficient vector's L2 norm (also known as the Euclidean norm or the square root of the sum of 
squares). The mixing parameter, α, defines the degree of regularization and typically ranges from 0 to 1. 
λ1 and λ2 represent the regularization parameters for L1 and L2 penalties respectively. 
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3. RESULTS ANALYSIS AND DISCUSSIONS 

3.1. Wave Climate 

The validation process of the MIKE 21-SW model, a well-regarded tool for simulating wave dynamics, 
was rigorously examined to ensure its accuracy. This examination revealed that the model effectively 
reproduced key wave parameters such as Hs and Tp, as confirmed by a thorough comparison with observational 
data. Such validation reinforces the model reliability in reflecting actual wave conditions. 

By integrating ERA5 data with the MIKE 21-SW model, this study successfully created a comprehensive 
long-term wave data series, offering valuable insights into the wave climate of the region. Furthermore, Figure 
7 vividly illustrates the directional distribution of simulated Hs at a depth of 20 meters. This figure not only 
highlights the predominant wave directions and their associated heights but also provides a detailed visualization 
of wave dynamics within the study area. 

The predominant wave direction from the N-NW sector, observed 86% of the time, underscores the 
region's consistent wave climate, aligning with findings from previous studies (Abo Zed, 2007; Frihy, Abd El 
Moniem, and Hassan, 2002). Regarding the wave heights, the maximum recorded on the eastern side of the 
Delta is 4.94 meters, with an average Hs of 0.88 meters and an average Tp of 6.1 seconds. In contrast, the 
western side exhibits a maximum wave height of 6.35 meters, an average Hs of 0.96 meters, and a peak period 
of 6.13 seconds. Notably, wave heights typically remain below 1.22 meters for over 75% of the year. Additionally, 
wave periods between 2.0 and 6.1 seconds occur for more than half of the year, whereas longer periods 
exceeding 8.0 seconds are observed in less than 10% of the time. 

 

Figure 7. Simulated directional distribution of wave heights (m) in the Nile Delta from 1940 to 2023 at a depth 

of 20 m 

3.2. Results Analysis and Discussion of Long-Term Data  

The results of the analysis of the synthesized long-term series of near-shore wave data during 84 years 
(i.e., 1940-2023), where the three methods were used to obtain the seasonal-trend and monthly-trend. Long-
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term wave changes are characterized by maximum Hs trends from 1940–2023. This is presented and explained 
in detail below. 

 Seasonal Analysis 

This section investigates seasonal trends in the maximum Hs along the Nile Delta coast. The results of 
the synthesized long-term wave data were analyzed, where the seasonal trend was obtained by linear-
regression, Thil-Sen and ElasticNet methods. For example, Figure 8 shows the Hs trends during the winter at 
selected locations along the Nile Delta coastline. It shows that the winter season has a positive trend in all 
locations using the three methods. However, the trend values varied between the locations; for example,  linear-
regression method reported trend values ranging from 0.15 cm/year at P1 to 0.53 cm/year at P6. In contrast, 
Thil-Sen method reported trend values ranging from 0.21 cm/year at P1 to 0.67 cm/year at P6. Furthermore, 
the ElasticNet method provided trend values ranging from 0.07 cm/year at P1 to 0.45 cm/year at P6.  

  

  

  

Figure 8. Seasonal trends for the maximum Hs time series in winter by using the three methods at each of the 

six selected points 
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Figure 9 presents the seasonal Hs trend for each of the six investigated points, where it was apparent 
that the seasonal trend of Hs varies seasonally.  It is worth noting that neither spring nor winter show any negative 
trend, which implies a consistent pattern of rising Hs during these seasons. In contrast, there is a negative trend 
in the maximum Hs at most sites in the summer. For instance, during the summer, sites P1–P4 showed negative 
trend values, while P5 and P6 showed small positive trends. Notably, Thil-Sen method consistently produced 
higher trend values across all locations than either the linear-regression or ElasticNet, especially in winter and 
spring. For example, in spring, Linear Regression had trend values ranging from 0.17 to 0.30 cm/year, Theil-
Sen from 0.21 to 0.40 cm/year, and ElasticNet from 0.09 to 0.22 cm/year. Furthermore, the ElasticNet method 
noticed no trends in specific locations during the summer and autumn seasons. Specifically, during the summer, 
there was no trend at locations 2, 3, 5, and 6. Similarly, during the autumn season, locations 2, 3, and 4 showed 
no distinct trend. 

  

 
Figure 9. Box plot of seasonal variation trends with the maximum Hs: (a) Linear-regression, (b) Thil-

Sen, and (c) ElasticNet 

 Monthly Analysis 

The results of the produced long-term wave data set (by MIKE21-SW) were analyzed (to obtain a 
monthly-trend) and presented in Figures 10 and 11. Figure 10 shows the trends in the maximum Hs during 
January at selected locations along the Nile Delta coastline. The figure shows a positive trend in January across 
all locations using the three methods. However, there were differences in the trend values between these 
locations. For example, the linear-regression method reported trend values ranging from 0.17 cm/year at P4 to 
0.43 cm/year at P2. In contrast, Thil-Sen method reported trend values ranging from 0.08 cm/year at P4 to 0.40 
cm/year at P2. Furthermore, the ElasticNet method provided trend values ranging from 0.08 cm/year at P4 to 
0.34 cm/year at P2. 
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Figure 11 presents the monthly Hs trend representing the 6 investigated points, where it is apparent that 
the monthly-trend of Hs varies monthly. For example, in February, the trend values ranged from 0.20 to 0.55 
cm/year for linear regression, 0.23 to 0.52 cm/year for Theil-Sen method, and 0.20 to 0.52 cm/year for ElasticNet. 
March shows additional differences, with trend values ranging from 0.02 to 0.41 cm/year for Theil-Sen method, 
0.05 to 0.34 cm/year for linear-regression, and 0 to 0.28 cm/year for ElasticNet. It is worth noting that all months, 
with the exception of July, August, and September, show a positive trend. In August, all the three methods 
showed a negative trend in most locations, with slight variations in trend values. Linear regression showed trend 
values between -0.19 and 0.03 cm/year, while Theil-Sen method suggested a range of -0.23 to -0.04 cm/year. 
ElasticNet, on the other hand, displayed trend values ranging from -0.23 to -0.01 cm/year. 

  

  

  

Figure 10. Monthly trends for  maximum Hs time series in January estimated using three different methods at 

each of the six selected points 
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Figure 11. Estimated Monthly trend variation of maximum Hs: (a) Linear Regression, (b) Thil-Sen, (c) ElasticNet 

The analysis of the long-term wave data along the Nile Delta coastline offers valuable insights into the 
trends and variations in the maximum Hs over an extended period (1940-2023). The synthesized data allowed 
the examination of seasonal and monthly trends using three analytical methods: linear-regression, Thil-Sen, and 
ElasticNet. Notably, no negative trends were observed during the spring or winter seasons, suggesting that Hs 
increased during these periods. Conversely, most sites exhibited a negative trend in the maximum Hs during the 
summer, with only a few locations showing slight positive trends. 

Furthermore, the examination of monthly trends provides additional insights into the temporal variability 
along the Nile Delta coastline. Distinct patterns emerged, with the majority of months showing positive trends in 
the maximum Hs, except for July, August, and September. It is important to note that the trend values varied 
across methods and locations; specifically, Thil-Sen consistently reported higher trend values compared to 
linear-regression and ElasticNet. This discrepancy could reflect seasonal variations in the wave dynamics, 
potentially influenced by factors such as weather patterns and coastal morphology. 

Comparing these results with the global studies on Hs trends reveals notable consistencies. For instance, 
research by Young et al. (2011) identified a positive trend in maximum Hs across most of the world’s oceans. 
Similarly, Ruggiero et al. (2010) observed a positive trend in the Pacific Ocean, with an increase in the mean 
annual Hs. Maia, Almeida, Nicolodi et al. (2023) reported significant increases in the wave heights in the Atlantic 
Ocean over the recent decades. In the Indian Ocean, Zheng and Li (2017) documented a notable increase in 
the monthly Hs during the 45-year period from 1957 to 2008. In the Mediterranean region, comparisons are also 
instructive. Barbariol et al. (2021) found that trend values for the maximum Hs were negative in summer and 
positive in winter over a 40-year study period (1980-2019). Similarly, Aristodemo et al. (2024) reported increased 
maximum Hs values over 42 years (1979-2020) in a significant portion of the Mediterranean Sea. 



Trans. marit. sci. 2024; 02 ~ Ibrahim et al.: Long-Term Trends in Significant… 16 

4. CONCLUSIONS AND RECOMMENDATIONS 

This study investigates the vulnerability of coastal zones due to climate change, with a particular 
emphasis on the maximum Hs along the Nile Delta coast. An 84-year dataset from ERA5 was thoroughly analyzed 
to comprehensively examine historical wave patterns, utilizing the MIKE21 SW model, which was rigorously 
validated against the observed data. Based on the analyzed results, the following conclusions were deduced: 

• The findings underscore a significant influence of climate change on the wave dynamics along the Nile 
Delta coast, with a pronounced trend of increasing maximum Hs, particularly during the winter months. 

• The observed rise in the wave heights increases the risks of coastal erosion, flooding, and infrastructure 
damage, highlighting the urgent need for adaptive coastal management strategies to protect and 
sustainably develop these vulnerable areas. 

• The statistical analyses reveal consistent long-term increasing trends in the maximum Hs across various 
methods, corroborating broader climate projections and affirming the strong impact of climate change 
on the wave dynamics. 

• The ongoing increases in the wave heights may alter the return periods of the extreme sea states, which 
has implications for coastal planning and infrastructure resilience. 

• It is imperative to incorporate future ocean wave climate trends into the design of marine structures to 
mitigate the increased risks associated with climate change, ensuring the longevity and safety of coastal 
infrastructure. 

• Proactive coastal management is crucial in addressing the challenges posed by climate change and 
safeguarding coastal zones against future climate threats. 
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